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Redis, Rust & Raft

Uri Shachar, Director of Software Engineering, Redis

&B reds



Introductions

Uri Shachar
Senior Director of Software
Engineering, Redis.




Agenda

c Redis - The OSS & The company

a Rust @ Redis

Replacing Redis Cluster with Raft
based mechanism
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Our Roots are in Open Source

& redis

An In-memory open source database, supporting a variety
high performance operational, analytics and hybrid use cases




Redis OSS

Redis Data Structures

Commonly used for: N
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Message bus (Pub/Sub)
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Available Everywhere

S (ws A

On major CSPs (either directly or

via partnerships) as a managed Google Cloud ~ Amazon Web Services  Microsoft Azure
product.
And as software. N\—/

VMWare Tanzu Kubernetes RedHat OpenShift

Bare Metal / VM




Rust @ Redis

@
Modules Control plane Core

e Redis module interface e New projects ® New Redis Clustering

e RelJSON e Quorum management e Client libs (redis-rs)

e Other e Authentication ® More coming...

redis
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Rust @ Redis

Specifically, my team is working almost entirely in Rust:

K8s Operators for managing Redis at scale

Control plane processes for managing and monitoring Redis instances
Component testing framework & tests

New Redis Clustering implementation




Redis Clustering

Redis Cluster
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Slots 0-5460 ®

Slots 5461-10922
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Slots 10923-16383
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Master A

Replica A1

Replica A2

e Master B

l

Replica B1 Replica B2

Master C

Replica C1 Replica C2
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TD: Topology Director

Flotilla - New Redis Cluster

e Two tiers of strongly consistent,
consensus-based control plane
systems

e Strong Consistency using Raft

e |mplemented as a Rust module
(of course :) )

e Coming soon to Open Source
near you

&B reds
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Macros in Rust

Unleashing the power of Metaprogramming

Yael Tzirulnikov/Software engineer, redis




Introductions

Yael Tzirulnikov
Senior Software Engineer
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A Riddle / C.GPT

I'm short and sweet, but can be tricky at times.

| can save you a lot of typing lines.
| help simplify code that’s long and repetitive,
Just call my name, and you’ll be so effusive!

What am 1?
A Macro!
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Agenda

© Macros in general
a Declarative macros
© rrocedural macros

© Ssome cool macros

redis
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Macros in general

e Meta programming - code that writes other code

e (Can receive a variable number of parameters

e Macros are expanded before the program finishes
compiling

e More complexity- hard to read and maintain

EEEEEEEEEEE
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Types of Macros in Rust

Declarative Macros

® macro rules!

redis
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Procedural Macros

# [proc_macro]
# [proc_macro derive]

# [proc_macro attribute]
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Declarative macros

e Allow you to write something similar to match expression
® [Macros also compare a value to patterns that are associated with

particular code:

o the value is the literal Rust source code passed to the macro

o the patterns are compared with the structure of that source code

o the code associated with each pattern, when matched, replaces the code

passed to the macro

redis
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Example- vec!

let v: Vec<u32> = vec![1l, 2, 31;

# [macro export]

macro rules! vec { {
. * —
($({$X'eXpr A let mut temp vec = Vec::new();
let mut temp vec = ‘ temp vec.push(l);
Vec: :new () ; temp vec.push(2);
S ( temp vec.push (3);
temp vec.push ($x); temp vec

) * }

temp vec

redis
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Procedural macros

® Act more like functions

® Accept some code as an input, operate on that code, and produce some code as an output

use proc macroy

foo!( foo { 2 + 2 } bar );
# [some attribute] T T
pub fn some name (input: TokenStream) Ident("foo")

Ident("bar")
—-> TokenStream {

Group("{}", TokenStream)
}

Literal("2") Literal("2")

Punct("+"

redis
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Syn, Quote crates

Syn:
Parse a stream of Rust tokens into a syntax tree of Rust source code

Quote:
Turn Rust syntax tree data structures into tokens of source code
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Procedural macros types

® custom derive
® attribute-like

® function-like

EEEEEEEEEEE
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Custom derive macros

#[derive (serde::Serialize, serde::Deserialize) ]

Module {}

® Used on structs and enums

e Specify code added with the derive attribute

EEEEEEEEEEE
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Custom derive macro- example

L HelloMacro for Pancakes {
fn hello_macro() {
println! (

#[derive(HelloMacro) ]
truct Pancakes;

EEEEEEEEEEE
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hello_macro _derive crate

EEEEEEEEEEE
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hello_macro_derive implementation

ite proc_macro,

se proc_macro::TokenStream,;
se quote::quote;
JSe Syn,

#[proc_macro_derive(HelloMacro)]

) fn hello_macro_derive(input: TokenStream) -> TokenStream {

= syn: :parse( input) .unwrap();

impl_hello_macro(&ast)

redis
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Syn result

DerivelInput {
// —-—-snip--

ident: Ident {

ident: "Pancakes",

span: #0 bytes(95..103)
}s
data: Struct(

DataStruct {
struct_token: Struct,
fields: Unit,
semi_token: Some(

Semi

)

redis
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hello_macro_derive implementation cont.

fn impl_hello_macro(ast: &syn::DerivelInput) -> TokenStream {
Let name = &ast. 1de

let gen = quote! {

impl HelloMacro for #name {
fn hello_macro() {
printin! ( . stringify! (#name));

EEEEEEEEEEE
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The result

EEEEEEEEEEE

#[derive (HelloMacro) ]
uct Pancakes;

fn main() {

Pancakes: :hello_macro() :
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Attribute like macros

# [route (GET, "/")]
fn index () {

e define custom attributes usable on any item

® The returned TokenStream replaces the item with an arbitrary number of

items.

The signature of the macro definition function would look like this:

# [proc macro attribute]
pub fn route(attr: TokenStream, i1item: TokenStream) -> TokenStream ({

redis
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https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/reference/items.html
https://doc.rust-lang.org/reference/items.html

Function like macros

todo or die::after date! (2023, 3, 1);

let testing = indoc! {"
def hello () :
print ('Hello,

hello ()
Mg

® Look like function calls but operate on the specified tokens

® Similar to macro_rules! macros, but much more flexible

e The output TokenStream replaces the entire macro invocation.

# [proc macro]
pub fn after date(input: TokenStream)

redis
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-> TokenStream {}

world!")
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Some cool macros
Log-derive- Result logging

https://crates.io/crates/log-derive

#[logfn (Err = "Error", fmt = "Failed Sending Packet:

#[logfn inputs (Info) ]

{:23") ]

fn send hi(addr: SocketAddr) -> Result<(), 1io::Error> ({

let mut stream = TcpStream::connect (addr) ?;
stream.write (b"H1!") ?;
Ok ( () )

}

A macro to log errors and inputs from a function.

redis
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https://crates.io/crates/log-derive

Some cool macros
Recap- regex parsing

https://crates.io/crates/recap

# [recap (regex = r#" (?x)
(?P<foo>\d+)
\s+
(?P<bar>true| false)
\s+
(?P<baz>\S+)
"¥#) ]
struct LogEntry {
foo: usize,
bar: bool,
baz: String,

redis
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An easy way to build data from regex strings!

let entry: LogEntry = "1 true hello".parse() ?;
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https://crates.io/crates/recap

Some cool macros
Shrinkwraprs — generate distinct types

https://crates.io/crates/shrinkwraprs

# [derive (Shrinkwrap) ]
struct Email (String) ;

let email = Email ("chiva+snacks@natsumeva.jp".into()) ;
let is discriminated email = email.contains ("+"); // Woohoo, we can
use the email like a string!

Shrinkwraprs redefines a datatype as a new distinct type. You can add the Shrinkwrap attribute to inherit all
the behaviour of the embedded datatype.

redis
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https://crates.io/crates/shrinkwraprs
mailto:chiya+snacks@natsumeya.jp

Some cool macros
Metered

https://crates.io/crates/metered

This macro will automatically generate the following stats on a method:

e HitCount:number of times a piece of code was called

e LErrorCount:number of errors returned — (works on any expression returning a Result)
e InFlight: number of requests active

® ResponseTime: statistics on the duration of an expression

e Throughput: how many times an expression is called per second.

redis
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https://crates.io/crates/metered

Some cool macros

Retrieve the metrics as serialised yaml:

Metered
let biz = Arc::new(Biz::default()):;
let serialized =
serde yaml::to string(&*biz) .unwrap ()
#[metered(registry = BizMetrics) ]
impl Biz { metrics:
# [measure ([HitCount, Throughput]) ] Tl 7
pub fn biz(&self) hit count: 1000
let delay = throughput:
std::time: :Duration: :from millis(rand::random: :<u64>() % - samples: 20
200) ; min: 35
std::thread: :sleep(delay) ; max: 58
} mean: 49.75
} stdev: 5.146600819958742

90%1le: 55
95%ile: 55
99%ile: 58
99.9%ile: 58
99.99%ile: 58
redis -

ENGINEERING
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Future

There are some strange edge cases with macro_rules!.
Macro 2.0 feature is in progress- a second kind of declarative macro
that will work in a similar fashion but fix some of these edge cases.

After that update, macro_rules! will be effectively deprecated.

redis

ENGINEERING

38



Summary

Tell the audience what you're going to say, say
it; then tell them what you've said.

(Dale Carnegie)

izquotes.com

redis
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Rust Const Generics

Gil Dafnai, Software Engineer,
Redis




Introductions

Gil Dafnai
Software Engineer
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Agenda

Motivation and Intuition
General Information
Nightly Features

References and other sources
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A Real Life (?) Example

# [derive (Debug) ]
ClusterID {

[

Node LDH

[

redis »
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Implementing ID
One implementation for each struct

ClusterID {
[

Debug ClusterID {

NodeID({
[

Debug

NodeID {

45



Implementing ID
Parameterize the Length

e We are just Moving the
problem to run time.

ClusterID {
ID

ClusterID {

if you have the time go read

Why Static Languages Suffer

From Complexity
Great comparison of applying

static and dynamic patterns to
the same problem

NodeID {
ID

NodeID {


https://hirrolot.github.io/posts/why-static-languages-suffer-from-complexity.html
https://hirrolot.github.io/posts/why-static-languages-suffer-from-complexity.html

Implementing ID

Parameterize the Length

e \ector allow us to parameterized the Length - but at run time

e We want it at compile time!

e Just like Vec<String> != Vec<u32> we should be able to say to ID<8> != ID<10>
(but both are still IDs)
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Implementing ID
Use Const Generics

e An ID canstill be an array of any ID<

length. But it has to be a specific ClusterID {
ID<32>

one.

e We can now implement Debug (or

any trait) for any ID.

&B reds )



Const Generics

General Information

e Const generics are generic arguments that range over constant values, rather

than types or lifetimes.
e This allows, for instance, types to be parameterized by integers.

® Arrays already allow specifying their length ([T; N]) but not in a generic way

(think about trying to implement a trait for an array of specific length)

&B reds
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Const Generics
General Information

e Const Generics were stabilized and released in version 1.51 and are currently in

MVP

e Only Integral types are supported - Signed and Unsigned integers, char and bool.

o So this is used mostly for generalizing arrays

® There are still important features under development

&B reds
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Const Generics
Another example from standard library -

e Now you can specify the chunk size. And the chunk size if part of

the iterator type.
e There is also a similar function for iterator chunks (the example

here is for slices)

array chunks< -> ArrayChunks<

}
// chunks (old, not typed)

slice = |
iter = slice.chunks (2)
(iter.next () .unwrap ()

/[ array_chunks
slice = [
iter = slice.array chunks()
(iter.next () .unwrap () & [

(iter.next () .unwrap ()

(iter.next () .unwrap () & [

(iter.next () .unwrap ()

(iter.next () .1s none())
(iter.next () .is none())

(iter.remainder () & [ 1)

redis
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MinSlice<T,N>

Performance Improvements

® MinSlice is a slice with know minimal MinSlice<
size .

e Just like slice it is unsized

e [t allows the compiler to verify
access to array items without
runtime validation

52




MinSlice<T,N>

Performance Implications

slice: &[u8] = e Dbut the compiler
value: Option<&u8> = slice.get (6) can't know that
(value.is some()) value is a valid
reference
slice: &[u8] = e Length check is
minslice = MinSlice::< >::from slice( performed when we
slice) .unwrap () construct a MinSlice
value: = minslice.head[6] e If the ‘'unwrap()
(value ) succeeds, no more

checks are needed

redis
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Const Generics
Complex Expressions (Nightly Only)

54



Const Generics
Compile Time Validations (Nightly Only)

® The compiler will prevent runtime errors at compile time
® This specific example is event more powerful when you think about compiling for different
platforms and architecture. environments, architectures, etc...

fill array (number: , array: & [ 1) |
// write number into array and pad with zeros

build array< : > (number:

[ () ]:

array = | ]
fill array(number, & array)
array

redis
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Const Generics
More Sources and Examples

e StaticVec - fixed-capacity stack-allocated Vec.

o also implemented a StaticString struct (StaticVec<u8, N>)

® Implementing Sha2 with Const Generics

]

: ScramblePool<T>

]



https://github.com/slightlyoutofphase/staticvec/
https://dev.to/dandyvica/implementing-sha2-256-512-algorithm-with-rust-const-generics-5ap

Const Generics
More Sources and Examples

#![feature(adticonstiparams)]
#![allow(incomplete features)]

# [derive (PartialEqg, Eq)]
State {

Machine< : State> {

Implementing a StateMachine

based on Const Generics

redis
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Machine<{State::
new() ->

{

accumulate( ) —> Machine<{State::

Machine {

}

Machine<{State::
add (& add:
+= add

freeze( ) —> Machine<{State::
Machine {

}

Machine<{State:: }> |
unwrap ( ) —> {



https://play.rust-lang.org/?version=nightly&mode=debug&edition=2018&gist=8648cf8795b73e8013a60cc8e3eea31a



https://www.linkedin.com/in/gil-dafnai/
#

FFl - How C & Rust can be BFFs?

Sharon Rosenfeld/Principal Software Engineer, redis




Introductions

Sharon Rosenfeld
Principal Software Engineer
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Agenda

@ Our FFl Use Case
Q 1st phase - basic wrapping

e 2nd phase - idiomatic wrapping
0 The callback challenge




Our use case

® \We write a redis module in Rust
® \We needed a Raft Client for our module
e Raft Lib is written in C :(

EEEEEEEEEEE




1st Phase - Basic Wrapping

® BindGen
e (0SS tool that consumes C/C++ headers and generates Rust FFl bindings
https://github.com/rust-lang/rust-bindgen

63


https://github.com/rust-lang/rust-bindgen

Bindgen Output

Doggo.rs iﬂEi}E

/* automatically generated by rust-bindgen*/

typedef struct Doggo {

int many; #[repr (C)]

char wow; pub struct Doggo {

pub many: ::std::os::raw::c_int,

} Doggo;
pub wow: ::std::os::raw::c_char,
void eleven out of ten majestic_af (Doggo* : : }
pupper) ; . .
extern "C" {
pub fn
eleven out of ten majestic_af (pupper: *mut
Doggo) ;
}
redis
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2nd Phase - Idiomatic Wrapping

® \Wrapper Layer

e Idiomatic standardization
O Return type
o Simple Arguments
o Struct Arguments

EEEEEEEEEEE




Wrapper Function Example

gpub fn recv snapshot response (
: &self,
1id: RaftNodeld,
resp: &RaftSnapshotResponse,
g) -> Result< (), RaftError> {
' let mut raw resp: raft snapshot resp t = resp.into();
let res = unsafe {
bindings::raft recv snapshot response (
id,

&mut raw resp as *mut raft snapshot resp t,

redis
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The Callback Challenge

‘extern "C" {
. pub fn raft recv read request (
cb: raft read request callback f,
cb arg: *mut ::std::os::raw::c_void,

) —> ::std::os::raw::c_int;

épub type raft read request callback f = ::std::option::0Option<
unsafe extern "C" fn(arg: *mut ::std::os::raw::c void, can read:

é ::std::os::raw::c _int),

redis
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Callback Flow

®-® 8 o @®®

Application Wrapper
passes a boxed CB passes predefined
struct CB + the “CB object”

from app.

redis
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Binding

C Library

Application

Wrapper callback
callback

Unfold the opaque
context and call
application callback



Wrapper Function

épub fn recv read request<C>(&self, read ctx: Box<C>) -> Result<(), RaftError>
;Where C: ReadCBCtx,
: {
: let ctx box ptr = Box::into raw(read ctx);
let ctx ptr = unsafe { transmute(ctx box ptr) };
let res = unsafe {
bindings::raft recv read request (
self.inner,
Some (callbacks: :read request callback: :<C>),

ctx ptr,

redis
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Wrapper Callback Code

: pub unsafe extern "C" fn read request callback<C>(arg: *mut c void, can read:
rc int)

EWhere C: ReadCBCtxk,
: let ptr = arg as *mut C;
let ctx = Box::from raw(ptr);
if !can read {
ctx.read(Err (EzError::ReadTimeout)) ;
} else {

ctx.read (0Ok (self.state));

redis
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To Wrap Things Up ...

e Bindgen
e Turning binding code to beautiful rust code
e Passing objects between rust, c and rust




@ Sharon Rosenfeld

Thank you

redis
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