The Three R’s:
Redis, Rust & Raft

Uri Shachar, Director of Software Engineering, Redis

&B reds

Introductions

Uri Shachar
Senior Director of Software
Engineering, Redis.

Agenda

c Redis - The OSS & The company

a Rust @ Redis

Replacing Redis Cluster with Raft
based mechanism

EEEEEEEEEEE

Our Roots are in Open Source

& redis

An In-memory open source database, supporting a variety
high performance operational, analytics and hybrid use cases

Redis OSS

Redis Data Structures

Commonly used for: N

Cache

Message bus (Pub/Sub)
Session store
Leaderboard

Bit field Geospatial Indexes

[=
Distributed Lock C e | sweams |

(©
((©

Job Queue

Persistence Durability Consistency

Redis

Redis Data Structures

Redis Modules

S

. Search @00
{ ’ } oeo
[XoXe]
UV
- : _7 (_ Graph
Bit field Geospatial Indexes ekt .} O (
<
Redis \\/ o Va4
m Enterprise ~
BloomFilter TimeSeries
e
Al
iy £ @ @ s B S
Linear scalability Durability Persistence/Backup Geo-distribution Tiered-memory Multi-tenant Security Consi-stency

redis

ENGINEERING

Available Everywhere

S (ws A

On major CSPs (either directly or

via partnerships) as a managed Google Cloud ~ Amazon Web Services Microsoft Azure
product.
And as software. N\—/

VMWare Tanzu Kubernetes RedHat OpenShift

Bare Metal / VM

Rust @ Redis

@
Modules Control plane Core

e Redis module interface e New projects ® New Redis Clustering

e RelJSON e Quorum management e Client libs (redis-rs)

e Other e Authentication ® More coming...

redis

ENGINEERING

Rust @ Redis

Specifically, my team is working almost entirely in Rust:

K8s Operators for managing Redis at scale

Control plane processes for managing and monitoring Redis instances
Component testing framework & tests

New Redis Clustering implementation

Redis Clustering

Redis Cluster

@ e

Slots 0-5460 ®

Slots 5461-10922

€e cccjocoeces

Slots 10923-16383

A

Master A

Replica A1

Replica A2

e Master B

l

Replica B1 Replica B2

Master C

Replica C1 Replica C2

redis

ENGINEERING

10

TD: Topology Director

Flotilla - New Redis Cluster

e Two tiers of strongly consistent,
consensus-based control plane
systems

e Strong Consistency using Raft

e |mplemented as a Rust module
(of course :))

e Coming soon to Open Source
near you

&B reds

12

Macros in Rust

Unleashing the power of Metaprogramming

Yael Tzirulnikov/Software engineer, redis

Introductions

Yael Tzirulnikov
Senior Software Engineer

14

A Riddle / C.GPT

I'm short and sweet, but can be tricky at times.

| can save you a lot of typing lines.
| help simplify code that’s long and repetitive,
Just call my name, and you’ll be so effusive!

What am 1?
A Macro!

21N N REAINGIA

Agenda

© Macros in general
a Declarative macros
© rrocedural macros

© Ssome cool macros

redis

ENGINEERING

16

Macros in general

e Meta programming - code that writes other code

e (Can receive a variable number of parameters

e Macros are expanded before the program finishes
compiling

e More complexity- hard to read and maintain

EEEEEEEEEEE

17

Types of Macros in Rust

Declarative Macros

® macro rules!

redis

ENGINEERING

Procedural Macros

[proc_macro]
[proc_macro derive]

[proc_macro attribute]

18

Declarative macros

e Allow you to write something similar to match expression
® [Macros also compare a value to patterns that are associated with

particular code:

o the value is the literal Rust source code passed to the macro

o the patterns are compared with the structure of that source code

o the code associated with each pattern, when matched, replaces the code

passed to the macro

redis

ENGINEERING

1

Example- vec!

let v: Vec<u32> = vec![1l, 2, 31;

[macro export]

macro rules! vec { {
. * —
($({$X'eXpr A let mut temp vec = Vec::new();
let mut temp vec = ‘ temp vec.push(l);
Vec: :new () ; temp vec.push(2);
S (temp vec.push (3);
temp vec.push ($x); temp vec

) * }

temp vec

redis

ENGINEERING

20

Procedural macros

® Act more like functions

® Accept some code as an input, operate on that code, and produce some code as an output

use proc macroy

foo!(foo { 2 + 2 } bar);
[some attribute] T T
pub fn some name (input: TokenStream) Ident("foo")

Ident("bar")
—-> TokenStream {

Group("{}", TokenStream)
}

Literal("2") Literal("2")

Punct("+"

redis

ENGINEERING

21

Syn, Quote crates

Syn:
Parse a stream of Rust tokens into a syntax tree of Rust source code

Quote:
Turn Rust syntax tree data structures into tokens of source code

22

Procedural macros types

® custom derive
® attribute-like

® function-like

EEEEEEEEEEE

23

Custom derive macros

#[derive (serde::Serialize, serde::Deserialize)]

Module {}

® Used on structs and enums

e Specify code added with the derive attribute

EEEEEEEEEEE

24

Custom derive macro- example

L HelloMacro for Pancakes {
fn hello_macro() {
println! (

#[derive(HelloMacro)]
truct Pancakes;

EEEEEEEEEEE

25

hello_macro _derive crate

EEEEEEEEEEE

26

hello_macro_derive implementation

ite proc_macro,

se proc_macro::TokenStream,;
se quote::quote;
JSe Syn,

#[proc_macro_derive(HelloMacro)]

) fn hello_macro_derive(input: TokenStream) -> TokenStream {

= syn: :parse(input) .unwrap();

impl_hello_macro(&ast)

redis

ENGINEERING

Syn result

DerivelInput {
// —-—-snip--

ident: Ident {

ident: "Pancakes",

span: #0 bytes(95..103)
}s
data: Struct(

DataStruct {
struct_token: Struct,
fields: Unit,
semi_token: Some(

Semi

)

redis

ENGINEERING

hello_macro_derive implementation cont.

fn impl_hello_macro(ast: &syn::DerivelInput) -> TokenStream {
Let name = &ast. 1de

let gen = quote! {

impl HelloMacro for #name {
fn hello_macro() {
printin! (. stringify! (#name));

EEEEEEEEEEE

29

The result

EEEEEEEEEEE

#[derive (HelloMacro)]
uct Pancakes;

fn main() {

Pancakes: :hello_macro() :

30

Attribute like macros

[route (GET, "/")]
fn index () {

e define custom attributes usable on any item

® The returned TokenStream replaces the item with an arbitrary number of

items.

The signature of the macro definition function would look like this:

[proc macro attribute]
pub fn route(attr: TokenStream, i1item: TokenStream) -> TokenStream ({

redis

ENGINEERING

31

https://doc.rust-lang.org/proc_macro/struct.TokenStream.html
https://doc.rust-lang.org/reference/items.html
https://doc.rust-lang.org/reference/items.html

Function like macros

todo or die::after date! (2023, 3, 1);

let testing = indoc! {"
def hello () :
print ('Hello,

hello ()
Mg

® Look like function calls but operate on the specified tokens

® Similar to macro_rules! macros, but much more flexible

e The output TokenStream replaces the entire macro invocation.

[proc macro]
pub fn after date(input: TokenStream)

redis

ENGINEERING

-> TokenStream {}

world!")

32

Some cool macros
Log-derive- Result logging

https://crates.io/crates/log-derive

#[logfn (Err = "Error", fmt = "Failed Sending Packet:

#[logfn inputs (Info)]

{:23")]

fn send hi(addr: SocketAddr) -> Result<(), 1io::Error> ({

let mut stream = TcpStream::connect (addr) ?;
stream.write (b"H1!") ?;
Ok (())

}

A macro to log errors and inputs from a function.

redis

ENGINEERING

33

https://crates.io/crates/log-derive

Some cool macros
Recap- regex parsing

https://crates.io/crates/recap

[recap (regex = r#" (?x)
(?P<foo>\d+)
\s+
(?P<bar>true| false)
\s+
(?P<baz>\S+)
"¥#)]
struct LogEntry {
foo: usize,
bar: bool,
baz: String,

redis

ENGINEERING

An easy way to build data from regex strings!

let entry: LogEntry = "1 true hello".parse() ?;

34

https://crates.io/crates/recap

Some cool macros
Shrinkwraprs — generate distinct types

https://crates.io/crates/shrinkwraprs

[derive (Shrinkwrap)]
struct Email (String) ;

let email = Email ("chiva+snacks@natsumeva.jp".into()) ;
let is discriminated email = email.contains ("+"); // Woohoo, we can
use the email like a string!

Shrinkwraprs redefines a datatype as a new distinct type. You can add the Shrinkwrap attribute to inherit all
the behaviour of the embedded datatype.

redis

ENGINEERING

85

https://crates.io/crates/shrinkwraprs
mailto:chiya+snacks@natsumeya.jp

Some cool macros
Metered

https://crates.io/crates/metered

This macro will automatically generate the following stats on a method:

e HitCount:number of times a piece of code was called

e LErrorCount:number of errors returned — (works on any expression returning a Result)
e InFlight: number of requests active

® ResponseTime: statistics on the duration of an expression

e Throughput: how many times an expression is called per second.

redis

ENGINEERING

36

https://crates.io/crates/metered

Some cool macros

Retrieve the metrics as serialised yaml:

Metered
let biz = Arc::new(Biz::default()):;
let serialized =
serde yaml::to string(&*biz) .unwrap ()
#[metered(registry = BizMetrics)]
impl Biz { metrics:
[measure ([HitCount, Throughput])] Tl 7
pub fn biz(&self) hit count: 1000
let delay = throughput:
std::time: :Duration: :from millis(rand::random: :<u64>() % - samples: 20
200) ; min: 35
std::thread: :sleep(delay) ; max: 58
} mean: 49.75
} stdev: 5.146600819958742

90%1le: 55
95%ile: 55
99%ile: 58
99.9%ile: 58
99.99%ile: 58
redis -

ENGINEERING

37

Future

There are some strange edge cases with macro_rules!.
Macro 2.0 feature is in progress- a second kind of declarative macro
that will work in a similar fashion but fix some of these edge cases.

After that update, macro_rules! will be effectively deprecated.

redis

ENGINEERING

38

Summary

Tell the audience what you're going to say, say
it; then tell them what you've said.

(Dale Carnegie)

izquotes.com

redis

ENGINEERING

40

Rust Const Generics

Gil Dafnai, Software Engineer,
Redis

Introductions

Gil Dafnai
Software Engineer

LN

Agenda

Motivation and Intuition
General Information
Nightly Features

References and other sources

43

A Real Life (?) Example

[derive (Debug)]
ClusterID {

[

Node LDH

[

redis »

ENGINEERING

Implementing ID
One implementation for each struct

ClusterID {
[

Debug ClusterID {

NodeID({
[

Debug

NodeID {

45

Implementing ID
Parameterize the Length

e We are just Moving the
problem to run time.

ClusterID {
ID

ClusterID {

if you have the time go read

Why Static Languages Suffer

From Complexity
Great comparison of applying

static and dynamic patterns to
the same problem

NodeID {
ID

NodeID {

https://hirrolot.github.io/posts/why-static-languages-suffer-from-complexity.html
https://hirrolot.github.io/posts/why-static-languages-suffer-from-complexity.html

Implementing ID

Parameterize the Length

e \ector allow us to parameterized the Length - but at run time

e We want it at compile time!

e Just like Vec<String> != Vec<u32> we should be able to say to ID<8> != ID<10>
(but both are still IDs)

47

Implementing ID
Use Const Generics

e An ID canstill be an array of any ID<

length. But it has to be a specific ClusterID {
ID<32>

one.

e We can now implement Debug (or

any trait) for any ID.

&B reds)

Const Generics

General Information

e Const generics are generic arguments that range over constant values, rather

than types or lifetimes.
e This allows, for instance, types to be parameterized by integers.

® Arrays already allow specifying their length ([T; N]) but not in a generic way

(think about trying to implement a trait for an array of specific length)

&B reds

49

Const Generics
General Information

e Const Generics were stabilized and released in version 1.51 and are currently in

MVP

e Only Integral types are supported - Signed and Unsigned integers, char and bool.

o So this is used mostly for generalizing arrays

® There are still important features under development

&B reds

50

Const Generics
Another example from standard library -

e Now you can specify the chunk size. And the chunk size if part of

the iterator type.
e There is also a similar function for iterator chunks (the example

here is for slices)

array chunks< -> ArrayChunks<

}
// chunks (old, not typed)

slice = |
iter = slice.chunks (2)
(iter.next () .unwrap ()

/[array_chunks
slice = [
iter = slice.array chunks()
(iter.next () .unwrap () & [

(iter.next () .unwrap ()

(iter.next () .unwrap () & [

(iter.next () .unwrap ()

(iter.next () .1s none())
(iter.next () .is none())

(iter.remainder () & [1)

redis

ENGINEERING

MinSlice<T,N>

Performance Improvements

® MinSlice is a slice with know minimal MinSlice<
size .

e Just like slice it is unsized

e [t allows the compiler to verify
access to array items without
runtime validation

52

MinSlice<T,N>

Performance Implications

slice: &[u8] = e Dbut the compiler
value: Option<&u8> = slice.get (6) can't know that
(value.is some()) value is a valid
reference
slice: &[u8] = e Length check is
minslice = MinSlice::< >::from slice(performed when we
slice) .unwrap () construct a MinSlice
value: = minslice.head[6] e If the ‘'unwrap()
(value) succeeds, no more

checks are needed

redis

ENGINEERING

Const Generics
Complex Expressions (Nightly Only)

54

Const Generics
Compile Time Validations (Nightly Only)

® The compiler will prevent runtime errors at compile time
® This specific example is event more powerful when you think about compiling for different
platforms and architecture. environments, architectures, etc...

fill array (number: , array: & [1) |
// write number into array and pad with zeros

build array< : > (number:

[()]:

array = |]
fill array(number, & array)
array

redis

ENGINEERING

Const Generics
More Sources and Examples

e StaticVec - fixed-capacity stack-allocated Vec.

o also implemented a StaticString struct (StaticVec<u8, N>)

® Implementing Sha2 with Const Generics

]

: ScramblePool<T>

]

https://github.com/slightlyoutofphase/staticvec/
https://dev.to/dandyvica/implementing-sha2-256-512-algorithm-with-rust-const-generics-5ap

Const Generics
More Sources and Examples

#![feature(adticonstiparams)]
#![allow(incomplete features)]

[derive (PartialEqg, Eq)]
State {

Machine< : State> {

Implementing a StateMachine

based on Const Generics

redis

ENGINEERING

Machine<{State::
new() ->

{

accumulate() —> Machine<{State::

Machine {

}

Machine<{State::
add (& add:
+= add

freeze() —> Machine<{State::
Machine {

}

Machine<{State:: }> |
unwrap () —> {

https://play.rust-lang.org/?version=nightly&mode=debug&edition=2018&gist=8648cf8795b73e8013a60cc8e3eea31a

https://www.linkedin.com/in/gil-dafnai/
#

FFl - How C & Rust can be BFFs?

Sharon Rosenfeld/Principal Software Engineer, redis

Introductions

Sharon Rosenfeld
Principal Software Engineer

60

Agenda

@ Our FFl Use Case
Q 1st phase - basic wrapping

e 2nd phase - idiomatic wrapping
0 The callback challenge

Our use case

® \We write a redis module in Rust
® \We needed a Raft Client for our module
e Raft Lib is written in C :(

EEEEEEEEEEE

1st Phase - Basic Wrapping

® BindGen
e (0SS tool that consumes C/C++ headers and generates Rust FFl bindings
https://github.com/rust-lang/rust-bindgen

63

https://github.com/rust-lang/rust-bindgen

Bindgen Output

Doggo.rs iﬂEi}E

/* automatically generated by rust-bindgen*/

typedef struct Doggo {

int many; #[repr (C)]

char wow; pub struct Doggo {

pub many: ::std::os::raw::c_int,

} Doggo;
pub wow: ::std::os::raw::c_char,
void eleven out of ten majestic_af (Doggo* : : }
pupper) ; . .
extern "C" {
pub fn
eleven out of ten majestic_af (pupper: *mut
Doggo) ;
}
redis

ENGINEERING

2nd Phase - Idiomatic Wrapping

® \Wrapper Layer

e Idiomatic standardization
O Return type
o Simple Arguments
o Struct Arguments

EEEEEEEEEEE

Wrapper Function Example

gpub fn recv snapshot response (
: &self,
1id: RaftNodeld,
resp: &RaftSnapshotResponse,
g) -> Result< (), RaftError> {
' let mut raw resp: raft snapshot resp t = resp.into();
let res = unsafe {
bindings::raft recv snapshot response (
id,

&mut raw resp as *mut raft snapshot resp t,

redis

ENGINEERING

The Callback Challenge

‘extern "C" {
. pub fn raft recv read request (
cb: raft read request callback f,
cb arg: *mut ::std::os::raw::c_void,

) —> ::std::os::raw::c_int;

épub type raft read request callback f = ::std::option::0Option<
unsafe extern "C" fn(arg: *mut ::std::os::raw::c void, can read:

é ::std::os::raw::c _int),

redis

ENGINEERING

Callback Flow

®-® 8 o @®®

Application Wrapper
passes a boxed CB passes predefined
struct CB + the “CB object”

from app.

redis

ENGINEERING

Binding

C Library

Application

Wrapper callback
callback

Unfold the opaque
context and call
application callback

Wrapper Function

épub fn recv read request<C>(&self, read ctx: Box<C>) -> Result<(), RaftError>
;Where C: ReadCBCtx,
: {
: let ctx box ptr = Box::into raw(read ctx);
let ctx ptr = unsafe { transmute(ctx box ptr) };
let res = unsafe {
bindings::raft recv read request (
self.inner,
Some (callbacks: :read request callback: :<C>),

ctx ptr,

redis

ENGINEERING

Wrapper Callback Code

: pub unsafe extern "C" fn read request callback<C>(arg: *mut c void, can read:
rc int)

EWhere C: ReadCBCtxk,
: let ptr = arg as *mut C;
let ctx = Box::from raw(ptr);
if !can read {
ctx.read(Err (EzError::ReadTimeout)) ;
} else {

ctx.read (0Ok (self.state));

redis

ENGINEERING

To Wrap Things Up ...

e Bindgen
e Turning binding code to beautiful rust code
e Passing objects between rust, c and rust

@ Sharon Rosenfeld

Thank you

redis

ENGINEERING

#

