
Bridging Rust and C++ with
cxx

Igor Khanin

Presentation for RustTLV meetup
January 2025

About Me

● Pretending to write C++ professionally for ~10 years
○ And a Rust enthusiast for less than that

● Currently working as a Senior Software Engineer @ Fireblocks
○ Opinions are my own

GitHub: https://github.com/IgKh/

E-mail: igor@khanin.biz

https://www.fireblocks.com
https://github.com/IgKh/
mailto:igor@khanin.biz

Motivation

● C++ and Rust have many similar concepts
○ RAII, references, strong type system, Zero-overhead principle…

● Gradual introduction of Rust is therefore natural for organizations with large
C++ code bases that want to improve safety

● There is need to both call from Rust to C++ and from C++ to Rust

● BUT:

○ There are also differing concepts that don’t easily map, e.g. traits vs inheritance, lifetimes

○ Neither has a stable ABI

■ C ABI is the least common denominator

Geometric Intuition C

C++

Rust

#[repr(C)]
#[no_mangle]
extern “C”

extern “C”
PODs

Geometric Intuition C

C++

Rust

#[repr(C)]
#[no_mangle]
extern “C”

Plain Rust Glue

extern “C”
PODs

cxx

Plain C++ Glue

Enter cxx.rs

● Started by David Tolnay in 2019

● Fundamental approach: by controlling both sides of the FFI boundary, it is
possible to ensure that they agree on the memory layout and semantics of all
types that cross the boundary

● This has some benefits:

○ Eliminate the intrinsic unsafety introduced by the bindings themselves

○ Direct bindings that don’t necessarily require marshalling

● But also some disadvantages…

http://cxx.rs

What Can Cross the FFI Boundary?

● Simple (primitive) types, for example:
○ i32 <-> int32_t
○ u8 <-> uint8_t, unsigned char
○ usize <-> size_t
○ f64 <-> double
○ bool <-> bool

● Opaque C++ types
○ Types that are defined in C++. Rust code can only access them indirectly (by reference) to call

exposed methods.

● Opaque Rust types
○ Types that are defined in Rust. C++ code can only access them indirectly to call exposed

methods.

What Can Cross the FFI Boundary?

● Specific complex types. For example:

Rust “Leg” C++ “Leg”

Box<T> rust::Box<T>

cxx::UniquePtr<T> std::unique_ptr<T>

String rust::String

cxx::CxxString std::string

&T const T&

Pin<&mut T> T&

Result<T, E> Exceptions!

More at https://cxx.rs/bindings.html

https://cxx.rs/bindings.html

What can Cross the FFI Boundary?

● Shared Types
○ Types defined as part of the FFI definition. Both sides know their definition and can access

fields, hold by value, etc.

● Shared types can be:
○ Simple enums
○ Structs of anything else supported by cxx

Example

Interface Definition

Rust Glue Code

Using from C++

Who Drives the Linker?

● Option 1 - cargo handles everything
○ For Rust-first projects with smaller amounts of C++ glue code
○ Using cxx-build crate in build.rs

● Option 2 - integrate into existing C++ build system
○ Configure cargo to build the crate containing bridge definition as a staticlib crate.
○ Have the build system install and run the cxxbridge CLI to generate the C++ side of the

FFI.
○ Compile all written and generated C++ code, and have the C++ compiler link it with the static

library emitted by cargo / rustc.
○ For CMake builds, Corrosion automates all of this nicely.

https://corrosion-rs.github.io/corrosion/ffi_bindings.html#cxx-integration

Who Drives the Linker?

● Beware of pitfalls with option 2:
○ Linking with multiple crates containing bridges
○ GCC vs Clang, libc++ vs libstdc++
○ MSVCRT debug runtime mismatch
○ LTO builds and GCC
○ …

Alternatives

● autocxx
○ Not an alternative per-se, but builds on cxx to eliminate the need to write most bridge modules

and glue code for projects that mainly call Rust from C++.

● zngur
○ Similar to cxx in basic approach, with different choices that affect the type of glue code that

needs to be written.

https://github.com/google/autocxx
https://hkalbasi.github.io/zngur/

Thank You!

https://github.com/IgKh/rustlv-cxx-example

