Bridging Rust and C++ with
CXX

lgor Khanin

Presentation for RustTLV meetup
January 2025

About Me

e Pretending to write C++ professionally for ~10 years
o And a Rust enthusiast for less than that

e Currently working as a Senior Software Engineer @ Fireblocks
o Opinions are my own

GitHub: https://qithub.com/IgKh/

E-mail: igor@khanin.biz

https://www.fireblocks.com
https://github.com/IgKh/
mailto:igor@khanin.biz

Motivation

e (C++ and Rust have many similar concepts
o RAII, references, strong type system, Zero-overhead principle...

e Gradual introduction of Rust is therefore natural for organizations with large
C++ code bases that want to improve safety

e There is need to both call from Rust to C++ and from C++ to Rust

e BUT:

o There are also differing concepts that don'’t easily map, e.g. traits vs inheritance, lifetimes
o Neither has a stable ABI

m C ABIl is the least common denominator

Geometric Intuition

[repr (C)]
[no mangle]

extern

\\C//

Rust

extern
PODs

C++

\\C//

Geometric Intuition

#[repr (C)] extern “C”
[no mangle]

extern “C”

Enter cxx.rs

e Started by David Tolnay in 2019

e Fundamental approach: by controlling both sides of the FFI boundary, it is
possible to ensure that they agree on the memory layout and semantics of all
types that cross the boundary

e This has some benefits:

o Eliminate the intrinsic unsafety introduced by the bindings themselves

o Direct bindings that don’t necessarily require marshalling

e But also some disadvantages...

http://cxx.rs

What Can Cross the FFI Boundary?

e Simple (primitive) types, for example:
o i32 <->int32 t
© u8 <->ulnt8 t,unsigned char
O wusize <-> size t
o f64 <->double
0 Dbool <->Dbool

e Opaque C++ types

o Types that are defined in C++. Rust code can only access them indirectly (by reference) to call
exposed methods.

e Opaque Rust types

o Types that are defined in Rust. C++ code can only access them indirectly to call exposed
methods.

What Can Cross the FFI Boundary?

e Specific complex types. For example:

Rust “Leg” C++ “Leg”

Box<T> rust: :Box<T>
cxx::UniquePtr<T> std::unique ptr<T>

String rust::String
cxx::CxxString std::string

&T const T&

Pin<&mut T> T&

Result<T, E> Exceptions!

More at https://cxx.rs/bindings.html

https://cxx.rs/bindings.html

What can Cross the FFI Boundary?

e Shared Types

o Types defined as part of the FFI definition. Both sides know their definition and can access
fields, hold by value, etc.

e Shared types can be:

o Simple enums
o Structs of anything else supported by cxx

Example

pub trait LogSink {
fn log_message(&self, message: &str),;

}

pub struct PageExtractor {
logger: &'static dyn LogSink,

impl PageExtractor ({
pub fn new(logger: &'static dyn LogSink) -> Self {

Self logger

}
pub fn extract_from_pdf(&mut self, source: &[u8]) -> Result<Vec<String>, Error> {
if source.is_empty
return Err(Exror: :EmptySource);
self.logger.log_message(&format! ("Got source of {} bytes", source.len())
Ok(vec!["First text".to_string(), "Second text".to_string()]
}

!

Interface Definition

21

#[cxx: :bridge]
mod ffi {

extern "Rust" {
type PageExtractorWrapper;

fn create_extractor(logger: &'static RustlLogSink

-> Box<PageExtractorWrapper>;

fn extract_from_pdf(&mut self, source: &[u8]) -> Result<Vec<String>>;

unsafe extern "C++" {

include! ("rustlogsink.h");
type RustLogSink;

fn send_message(&self, message: &CxxString);

R

ust Glue Code

Neeadeda due TO orpnan ruile
struct PageExtractorWrapper {
inner: PageExtractor

impl PageExtractorWrapper {

fn extract_from_pdf(&mut self, source: &[u8]) -> Result<Vec<String>, magiclib::Error>
self.inner.extract_from_pdf(source)

}

impl magiclib::LogSink for ffi::RustLogSink {
fn log_message(&self, message: &str) ({
cxx::let_cxx_string! (cxx_message = message) ;

self.send_message(&cxx_message) ;

fn create_extractor(logger: &'static ffi::RustLogSink) -> Box<PageExtractorWrapper> ({
Box: :new(PageExtractorWrapper { inner: PageExtractor::new(logger) })

Using from C++

#include "rust/cxx.h"

void process_pages(const std::vector<uint8_t>& data)

{

RustLogSink logger;
rust::Box<PageExtractorWrapper> extractor = create_extractor(logger);

try {
rust::Vec<rust::String> pages = extractor->extract_from_pdf(rust::Slice<const uint8_t>(data)

for (auto& page : pages
std::cout << "Page

"

<< page.c_str() << std::endl;

}
catch (rust::Exrroxr& e) {

std: :cout << "Extraction failed: " << e.what << std::endl;
}

Who Drives the Linker?

e Option 1 - cargo handles everything

o For Rust-first projects with smaller amounts of C++ glue code
o Using cxx-build crate in build.rs

e Option 2 - integrate into existing C++ build system
o Configure cargo to build the crate containing bridge definition as a staticlib crate.
o Have the build system install and run the cxxbridge CLI to generate the C++ side of the
FFI.
o Compile all written and generated C++ code, and have the C++ compiler link it with the static
library emitted by cargo / rustec.
o For CMake builds, Corrosion automates all of this nicely.

https://corrosion-rs.github.io/corrosion/ffi_bindings.html#cxx-integration

Who Drives the Linker?

e Beware of pitfalls with option 2:

(@)

o O O O

Linking with multiple crates containing bridges
GCC vs Clang, libc++ vs libstdc++

MSVCRT debug runtime mismatch

LTO builds and GCC

Alternatives

e autocxx

o Not an alternative per-se, but builds on cxx to eliminate the need to write most bridge modules
and glue code for projects that mainly call Rust from C++.

® ZNngur

o Similar to cxx in basic approach, with different choices that affect the type of glue code that
needs to be written.

https://github.com/google/autocxx
https://hkalbasi.github.io/zngur/

Thank You!

https://github.com/IgKh/rustlv-cxx-example

