
Are We Embedded
Yet?

Implementing tiny HTTP server on a
microcontroller

whoam
i Maor Malka -

● Electronics Engineer and Maker
● Currently working as a Digital Design Engineer @

ARBE
● Doing Embedded Code , Hardware Design and Logic

Design for the past 11 Years
● Trying to add Rust as a part of my toolbox

Agenda
➔ Microcontrollers quick glance

➔ The challenge with rust

➔ Use case

➔ Creating the Driver

➔ Creating the build environment

➔ Debugging

➔ Results/Demo

➔ Conclusions

What are microcontrollers?
Microcontrollers are compact, self-contained computing devices.

They consist of a processor memory,peripherals, and sometimes additional specialized
hardware, all integrated onto a single chip.

Designed for real-time operations- Most microcontrollers run either a Bare metal
environment running a basic task loop or an interrupt driven loop; or use an RTOS which
will ensure consistent, deterministic behaviour

They are engineered for low power consumption, making them suitable for battery-
operated and energy-efficient devices.

And yes, they are everywhere. This one.

What types are there?
Microcontrollers come in many many variants, and is a constant battle between
performance,power and price

Here are some example of the possible processor architectures you can find in
microcontrollers used today:

8 Bit: AVR (classic arduino), PIC (microchip), 8051

16 Bit: MSP430(TI), dsPIC (microchip)

32 Bit: ARM(M series),RISC-V, MIPS

Memory is scarce, and can vary as low as 8KB of FLASH and 512 bytes of RAM

You can still buy one time programmable ones, as cheap as 0.03$ per piece!

What About Rust?

Most microcontrollers implement a
single address space for Everything.

This includes Your Code, RAM, and
Peripherals.

That means that to access the perierpals
we read and write to certain address spaces.

Why is that a problem?

Offset Name Description Width

0x00 SYST_CSR Control and Status
Register

32 bits

0x04 SYST_RVR Reload Value Register 32 bits

0x08 SYST_CVR Current Value Register 32 bits

0x0C SYST_CALIB Calibration Value Register
(Read only)

32 bits

Systick, located at 0xE000_E010

BUT WHAT ABOUT THE

BORROW CHECKER?

How to handle borrow checking on the peripherals?

● The User Can borrow access to the
peripherals

● Any additional borrow will cause a
panic.

Why not make peripherals a
global mutable static
variable?

HAL 9000
The methodology of using all of these
peripherals will require us to write a lot of
code to access all these peripherals.

Luckly, most microcontroller designers also
provide an SVD file, which describes all the
peripherals, their addresses, and fields.

This SVD file can be converted to the
Peripheral Access Crate, which creates the
necessary structs and mapping to allow for
proper access to the peripherals.

This however is not enough as you’ll still need
a lot of manual register writes to perform
tasks on the peripherals, and thus, a
Hardware Abstraction Library (HAL) is written
to allow the user to perform basic operations
on the peripherals.

Use case
I wanted try and create a somewhat useful
project using embedded rust to show several
aspects

➔ Reuse
The ability to use cargo to save a lot of
time making code blocks

➔ Size
Even when using rust we can still fit in
small sized microcontrollers

➔ Safety

Leveraging rust to ensure no funny
business is done unknowingly

The Task?
Implement a working “web server” on an STM32.
Why? To allow GUI usage without needing additional SW*
The Problem?
Our microcontroller (STM32l412):
● Has no networking hardware.
● Has no file system support.
● Has only 128 KB of Flash and 40 KB of RAM.

#![no_std]
● Given the Space limitations, it is very common to use #![no_std] in

embedded rust projects.
● This implies that we need to additional steps to get basic functions of

rust working (such as Vec,Panics)
● This also implies that any crate we choose to use has to support

running in #![no_std] mode.

So what are we doing?
The plan is to use the USB interface of the STM32 microcontroller to
create a compliant CDC-NCM device, AKA- USB-Ethernet Dongle

Next, we will need to get a TCP/IP stack working on the board and create
a network interface adapter that will support our USB interface

Finally, We will create a server with two sockets:

● A HTTP socket which will serve the website and handle GET/POST
requests

● A DHCP socket which will give the computer which the device is
connected to an IP.

Kind of like this
Gray: Crates
Lightblue: Code we need to
write

Creating the driver

● CDC-NCM Driver
○ Writing an CDC-NCM descriptors as per the USB

spec supported by usb-device crate
○ Building an API handler to parse the incoming USB

traffic and convert it to ethernet packets and vise-
versa

○ As packets arrive in small chunks (64 bytes), we
need to buffer and slowly parse the messages, this
was done using a concurrent queue

● Smoltcp netif
○ Smoltcp expects the crate user to create a network

interface and connect it by providing tx/rx tokens it
will consume

○ This was implemented by creating a concurrent
queue between the NCM-API handler and the
NETIF

The Bare Metal build environment

● Cross-compiler toolchain
● Runtime
● Memory.x (Linker Script)
● Build.rs (to force rustc to use the linkers script)
● Our Main.rs which contains:

○ Entry point for our code
○ A Panic Handler
○ Global Allocator
○ Hardware Exception Handlers

Debugging
Debugging is super easy; If you have the
right tools.

As rust supports GDB, we can easily setup a
GDB server using openOCD which
interfaces to the board via a jtag debugger

As the microcontroller uses a modern ARM
core, we also have access to the RTT (real-
time trace)

That coupled with ferrous-systems defmt
allows us to get logs and even panics
printed out to our console!

Safety?

● Global variables
○ As common as sand in embedded

projects
○ Being forced to use a mutex

● Concurrency
○ Can’t do it otherwise
○ Interrupt driven ready

● Compilation/Panic gotchas
○ overflow/underflow
○ Invalid api sizes

Demo Time!

Conclusions

Are the goals covered?
Yes! we have a working
project, which is fast, light
and safe!

The customer-vendor problem
As long as customers do not request
usage of rust, the support and
toolchains will be stuck in open
source support

Professional safe environments
Automotive - ISO26262, ferrous systems has
created a certified rustc which can be used
on automotive systems
Aerospace -DO178 has not yet been
adopted
Medical - IEC 60601 has not yet been
adopted
Military?

RTOS in rust
● Embassy
● RTIC
● lilos

Embedded engineers are a tough nut.
Experience and insanity will make it very
difficult to shift embedded software
engineers to attempt new languages
other than C (or C++ on embedded
linux).

However… are we
embedded?

RTOS in C
● FreeRTOS (21 Years)
● AzureRTOS (27 Years)
● uC/OS (33 Years)

Thank you!
questions?

	Are We Embedded Yet?
	whoami
	Slide 3
	What are microcontrollers?
	What types are there?
	What About Rust?
	Most microcontrollers implement a single address space for Ever
	Slide 8
	Slide 9
	HAL 9000
	Slide 11
	The Task? Implement a working “web server” on an STM32. Why?
	#![no_std]
	So what are we doing?
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Demo Time!
	Slide 21
	Thank you! questions?

