TAURI: CROSS-PLATFORM
DESKTOP APPLICATIONS WIT
RUST AND WEB TECHNOLOGIES

LIEL FRIDMAN

TAURIIN A NUTSHELL

* Alibrary for desktop (and recently mobile) application development

* Uses web technologies
* Butsupports front end in Rust as well (Dioxus, Leptos, Yew)
* Backend code is Rust, but third-party binaries can be embedded as sidecars

* Written in Rust

* Developers can write backend logic in Rust, but don’t have to

https://tauri.app/develop/sidecar/

APPS SHOWCASE

I’'m not affiliated with any of these. | just thought they serve as cool examples.
 pgMagic —a PostgreSQL client that supports naturual language

* RustDesk — open-source remote access and support software

https://pgmagic.app/
https://pgmagic.app/
https://rustdesk.com/?lang=en
https://rustdesk.com/?lang=en

TAURI VS ELECTRON (1)

e Rust based vs Node.js based

* Adifferent philosophy of using the browser

e Tauriuses the OS-provided WebView

Electron bundles Chromium

Impacts size

https://tauri.app/reference/webview-versions/
https://tauri.app/reference/webview-versions/
https://tauri.app/reference/webview-versions/

TAURI VS ELECTRON (2)

* Security

Electron apps can be very secure

But it’s harder to misuse Tauri
IPC via message passing

Permissions mechanism

e (Caveat: Rust code is not isolated

https://www.electronjs.org/docs/latest/tutorial/security

CLIAND DEVELOPMENT SETUP

Two primary tools:
* Create-tauri-app — for scaffolding new Tauri projects

* Tauri CLI — for manual setup and other tasks (installed locally on projects, but can also be installed
globally)

A Rust toolchain is necessary, as well as Node.js and your favorite build tool (if you use JS/TS for the
frontend) or the .NET equivalent.

Regarding IDEs, the recommended setup is VS Code, Neovim or Jetbrains IDEs.

See the documentation for more information.

https://tauri.app/start/create-project/

PROJECT STRUCTURE

* Designed to be minimally invasive and allow existing frontend code to work with Tauri
* Rust code and Tauri configuration live in the src-tauri folder

* Create-tauri-app installs the tauri CLI into the project, but also allows separate frontend development

PROCESS MODEL

COMMANDS (FRONTEND -> RUST) (1)

e Every callis a command
e Permissions system (more on that shortly)

* Flexible payload (only needs to implement Serde::Deserialize)

COMMANDS (FRONTEND -> RUST) (2)

#[tauri: :command]

fn login(user: String, password: String) -> Result<String, String> {
if user == "tauri" && password == "tauri" {

Ok("logged_in".to_string())
} else {

Err(“invalid credentials".to_string())
s
}

[

EVENTS AND CHANNELS (1)

e For small events: Events
* Also ideal for multi consumer and multi producer system
* Unlike commands, no strong type support. Payloads are always JSON strings
* No permissions/capabilities

* For low latency: Channels

EVENTS AND CHANNELS (2)

Global events

r

use tauri::{AppHandle, Emitter};

#[tauri: :command]

fn download(app: AppHandle, url: String) {
app.emit("download-started", &url).unwrap();
for progress in [1, 15, 50, 80, 1 {

app.emit("download-progress"”, progress).unwrap();

}

app.emit("download-finished", &url).unwrap();

EVENTS AND CHANNELS (3)

Webview events (specific to one view)

r

use tauri::{AppHandle, Emitter};

#[tauri::command]

fn login(app: AppHandle, user: String, password: String) {
let authenticated = user == "tauri-apps" && password == "tauri";
let result = if authenticated { "loggedIn" } else { "invalidCredentials" };
app.emit_to("login", "login-result"”, result).unwrap();

}

EVENTS AND CHANNELS (4)

Listening to events on the frontend (global events)

r

import { listen } from '@tauri-apps/api/event’;

type DownloadStarted = {
url: string;
downloadId: number;
contentLength: number;

b

listen<DownloadStarted>('download-started', (event) => {
console. log(
“downloading ${event.payload.contentLength} bytes from ${event.payload.url}"
)5
});

EVENTS AND CHANNELS (5)

Listening to events on the frontend (webview-specific events)

import { getCurrentWebviewWindow } from '@tauri-apps/api/webviewWindow';

const appWebview = getCurrentWebviewWindow();
appWebview.listen<string>('logged-in', (event) => {
localStorage.setItem('session-token', event.payload);

1)

Unlisten
import { listen } from '@tauri-apps/api/event’;

const unlisten = await listen('download-started', (event) => {});
unlisten();

EVENTS AND
CHANNELS (6)

Channels (fast, ordered)

use tauri::{AppHandle, ipc::Channel};
use serde::Serialize;

#[derive(Clone, Serialize)]

#[serde(rename_all = "camelCase", tag = "event", content = "data")]
enum DownloadEvent<'a> {

#[serde(rename_all = "camelCase")]

Started {

Uuplt: & alste,
download_1id: usize,
content_length: usize,

o
#[serde(rename_all = "camelCase")]
Progress {
download_1id: usize,
chunk_length: usize,
b
#[serde(rename_all = "camelCase")]
Finished {
download_id: usize,
b

EVENTS AND #[tauri::command]

CHANNELS 7 fn download(app: AppHandle, url: String, on_event: Channel<DownloadEvent>) {
() let content_length = 1000;

let download_1id = 1;

on_event.send(DownloadEvent::Started {
url: &url,
download_1id,
content_length,

}).unwrap();

for chunk_length in [15, 150, 35, 500, 300] {
on_event.send(DownloadEvent::Progress {

Channels (fast, ordered) download_id,
chunk_length,

}).unwrap();

}

on_event.send(DownloadEvent::Finished { download_id }).unwrap();

EVENTS AND
CHANNELS (9)

Channels (fast, ordered) — Frontend Side

r

import { invoke, Channel } from '@tauri-apps/api/core’;
type DownloadEvent =
I

const onEvent = new Channel<DownloadEvent>();
onEvent.onmessage = (message) => {
console.log(got download event ${message.event}’);

b

await invoke('download', {

url: '"https://raw.githubusercontent.com/tauri-apps/tauri/dev/crates/tauri-schema-generator/schemas/
config.schema. json',

onEvent,

});

LISTENING TO EVENTS IN RUST

use tauri::Listener;

#[cfg_attr(mobile, tauri::mobile_entry_point)]
pub fn run() {
tauri::Builder::default()
.setup(|app| {
app.listen("download-started", |event]| {
if let Ok(payload) = serde_json::from_str::<DownloadStarted>(&event.payload()) {
println!("downloading {}", payload.url);
e

})

.run(taurti::generate_context!())
.expect("error while running tauri application");

DEMO TIME: BASICS

PERMISSIONS (1)

* |PCis the only way of the Ul to communicate with the application core
* Done via message passing, and each message is also known as a command
* Permissions give explicit privileges to commands
* Can be scoped. For example, filesystem permissions can be restricted to the home folder

* Example in the next slide

PERMISSIONS (2)

Allowed variables

[[permission]]
identifier = "my-identifier"
description = "This describes the impact and more."
commands.allow = [
"read_file"

]

[[scope.allow]]
my-scope = "$HOME/*"

[[scope.deny]]
my-scope = "$HOME/secret”

https://github.com/tauri-apps/tauri/blob/d7b998fe71eca4d5471d73900f7694c043a17256/crates/tauri/src/path/mod.rs

CAPABILITIES

* Build upon the permissions system "$schema": "../gen/schemas/desktop-schema.json",
"identifier": "desktop-capability",

"windows": ["main"],

"platforms": ["linux", "macO0S", "windows"],

* Label # title "permissions": ["global-shortcut:allow-register"]

* Aset of permissions mapped to application
windows by their label

e Still need to carefully manage window creation
permissions

e (Can also be platform-specific

* (Can be defined in JSON orin TOML

IPC: BROWNFIELD

* Default pattern

* No sanitization layer, but still limited ways of misuse

IPC: ISOLATION

* Protects against development threats
* Not enabled by default
e Introduces some overhead

* |solation application runs separately

PLUGINS

* Provide out-of-the-box functionality
* Can be used directly in JS/TS, no need to write custom Rust code
* but some can be also used directly from Rust
* Examples:
 Log — configurable logging
 Deep-link —allows to set the app as the default handler for a URL
e Dialog — native system dialogs along with message dialogs

e List of all official plugins

* Awesome-Tauri

https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/log
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/log
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/log
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/dialog
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/dialog
https://github.com/tauri-apps/plugins-workspace?tab=readme-ov-file
https://github.com/tauri-apps/plugins-workspace?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file

WRAPPING EXISTING PROJECTS IN TAURI

Relatively straightforward: using the tauri CLI, init a project and use ".." as the location of web assets

DISTRIBUTION AND PACKAGING

e Tauri supports packaging out of the box

* Caveat: Apart from specific (experimental) use cases, you’ll need to run the build command on each target
platform

Run the bundle command in the Tauri CLI

e See the documentation for more info and caveats

https://tauri.app/distribute/

DEMO: MORE ADVANCED SETUP

ADDITIONAL LINKS

e QOfficial documentation

* Awesome Tauri

e GitHub

e Discord

https://tauri.app/start/
https://tauri.app/start/
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/tauri
https://github.com/tauri-apps/tauri
https://discord.com/invite/tauri
https://discord.com/invite/tauri

THANK YOU

Personal contact info:
e GitHub
e Email: lielft <at> gmail

* Linkedln

https://github.com/lielfr
https://github.com/lielfr
https://www.linkedin.com/in/lielfr/
https://www.linkedin.com/in/lielfr/

	Slide 1: Tauri: Cross-Platform desktop applications with Rust and web technologies
	Slide 2: Tauri in a nutshell
	Slide 3: Apps Showcase
	Slide 4: Tauri vs Electron (1)
	Slide 5: Tauri vs Electron (2)
	Slide 6: CLI and Development Setup
	Slide 7: Project Structure
	Slide 8: Process Model
	Slide 9: Commands (Frontend -> Rust) (1)
	Slide 10: Commands (Frontend -> Rust) (2)
	Slide 11: Events And Channels (1)
	Slide 12: Events And Channels (2)
	Slide 13: Events And Channels (3)
	Slide 14: Events And Channels (4)
	Slide 15: Events And Channels (5)
	Slide 16: Events And Channels (6)
	Slide 17: Events And Channels (7)
	Slide 18: Events And Channels (9)
	Slide 19: Listening to events in Rust
	Slide 20: Demo Time: Basics
	Slide 21: Permissions (1)
	Slide 22: Permissions (2)
	Slide 23: Capabilities
	Slide 24: IPC: Brownfield
	Slide 25: IPC: Isolation
	Slide 26: Plugins
	Slide 27: Wrapping existing projects in Tauri
	Slide 28: Distribution and Packaging
	Slide 29: Demo: More Advanced Setup
	Slide 30: Additional Links
	Slide 31: Thank you

