
TAURI: CROSS-PLATFORM 
DESKTOP APPLICATIONS WITH 

RUST AND WEB TECHNOLOGIES
LIEL FRIDMAN



TAURI IN A NUTSHELL 

• A library for desktop (and recently mobile) application development 

• Uses web technologies 

• But supports front end in Rust as well (Dioxus, Leptos, Yew)

• Backend code is Rust, but third-party binaries can be embedded as sidecars

• Written in Rust

• Developers can write backend logic in Rust, but don’t have to

https://tauri.app/develop/sidecar/


APPS SHOWCASE

I’m not affiliated with any of these. I just thought they serve as cool examples.

• pgMagic – a PostgreSQL client that supports naturual language

• RustDesk – open-source remote access and support software

https://pgmagic.app/
https://pgmagic.app/
https://rustdesk.com/?lang=en
https://rustdesk.com/?lang=en


TAURI VS ELECTRON (1)

• Rust based vs Node.js based 

• A different philosophy of using the browser

• Tauri uses the OS-provided WebView 

• Electron bundles Chromium

• Impacts size

https://tauri.app/reference/webview-versions/
https://tauri.app/reference/webview-versions/
https://tauri.app/reference/webview-versions/


TAURI VS ELECTRON (2)

• Security

• Electron apps can be very secure

• But it’s harder to misuse Tauri

• IPC via message passing

• Permissions mechanism 

• Caveat: Rust code is not isolated

https://www.electronjs.org/docs/latest/tutorial/security


CLI AND DEVELOPMENT SETUP

Two primary tools:

• Create-tauri-app – for scaffolding new Tauri projects

• Tauri CLI – for manual setup and other tasks (installed locally on projects, but can also be installed 
globally)

A Rust toolchain is necessary, as well as Node.js and your favorite build tool (if you use JS/TS for the 
frontend) or the .NET equivalent.

Regarding IDEs, the recommended setup is VS Code, Neovim or Jetbrains IDEs.

See the documentation for more information.

https://tauri.app/start/create-project/


PROJECT STRUCTURE

• Designed to be minimally invasive and allow existing frontend code to work with Tauri

• Rust code and Tauri configuration live in the src-tauri folder

• Create-tauri-app installs the tauri CLI into the project, but also allows separate frontend development



PROCESS MODEL

Core

WebView Process

WebView Process

WebView Process

WebView

WebView

WebView



COMMANDS (FRONTEND -> RUST) (1)

• Every call is a command

• Permissions system (more on that shortly)

• Flexible payload (only needs to implement Serde::Deserialize)



COMMANDS (FRONTEND -> RUST) (2)



EVENTS AND CHANNELS (1)

• For small events: Events

• Also ideal for multi consumer and multi producer system

• Unlike commands, no strong type support. Payloads are always JSON strings

• No permissions/capabilities

• For low latency: Channels



EVENTS AND CHANNELS (2)

Global events



EVENTS AND CHANNELS (3)

Webview events (specific to one view)



EVENTS AND CHANNELS (4)

Listening to events on the frontend (global events)



EVENTS AND CHANNELS (5)

Listening to events on the frontend (webview-specific events)

Unlisten



EVENTS AND 
CHANNELS (6)

Channels (fast, ordered)



EVENTS AND 
CHANNELS (7)

Channels (fast, ordered)



EVENTS AND 
CHANNELS (9)

Channels (fast, ordered) – Frontend Side



LISTENING TO EVENTS IN RUST



DEMO TIME: BASICS



PERMISSIONS (1)

• IPC is the only way of the UI to communicate with the application core

• Done via message passing, and each message is also known as a command

• Permissions give explicit privileges to commands

• Can be scoped. For example, filesystem permissions can be restricted to the home folder

• Example in the next slide



PERMISSIONS (2)

Allowed variables

https://github.com/tauri-apps/tauri/blob/d7b998fe71eca4d5471d73900f7694c043a17256/crates/tauri/src/path/mod.rs


CAPABILITIES

• Build upon the permissions system

• A set of permissions mapped to application 
windows by their label

• Label ≠ title

• Still need to carefully manage window creation 
permissions

• Can also be platform-specific

• Can be defined in JSON or in TOML



IPC: BROWNFIELD

• Default pattern

• No sanitization layer, but still limited ways of misuse



IPC: ISOLATION

• Protects against development threats

• Not enabled by default

• Introduces some overhead

• Isolation application runs separately



PLUGINS

• Provide out-of-the-box functionality

• Can be used directly in JS/TS, no need to write custom Rust code

• but some can be also used directly from Rust

• Examples:

• Log – configurable logging

• Deep-link – allows to set the app as the default handler for a URL

• Dialog – native system dialogs along with message dialogs

• List of all official plugins

• Awesome-Tauri

https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/log
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/log
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/log
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/deep-link
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/dialog
https://github.com/tauri-apps/plugins-workspace/blob/v2/plugins/dialog
https://github.com/tauri-apps/plugins-workspace?tab=readme-ov-file
https://github.com/tauri-apps/plugins-workspace?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file


WRAPPING EXISTING PROJECTS IN TAURI

Relatively straightforward: using the tauri CLI, init a project and use `..` as the location of web assets



DISTRIBUTION AND PACKAGING

• Tauri supports packaging out of the box

• Caveat: Apart from specific (experimental) use cases, you’ll need to run the build command on each target 
platform

• Run the bundle command in the Tauri CLI

• See the documentation for more info and caveats

https://tauri.app/distribute/


DEMO: MORE ADVANCED SETUP



ADDITIONAL LINKS

• Official documentation

• Awesome Tauri

• GitHub

• Discord

https://tauri.app/start/
https://tauri.app/start/
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/awesome-tauri?tab=readme-ov-file
https://github.com/tauri-apps/tauri
https://github.com/tauri-apps/tauri
https://discord.com/invite/tauri
https://discord.com/invite/tauri


THANK YOU

Personal contact info:

• GitHub

• Email: lielft <at> gmail

• LinkedIn

https://github.com/lielfr
https://github.com/lielfr
https://www.linkedin.com/in/lielfr/
https://www.linkedin.com/in/lielfr/

	Slide 1: Tauri: Cross-Platform desktop applications with Rust and web technologies
	Slide 2: Tauri in a nutshell 
	Slide 3: Apps Showcase
	Slide 4: Tauri vs Electron (1)
	Slide 5: Tauri vs Electron (2)
	Slide 6: CLI and Development Setup
	Slide 7: Project Structure
	Slide 8: Process Model
	Slide 9: Commands (Frontend -> Rust) (1)
	Slide 10: Commands (Frontend -> Rust) (2)
	Slide 11: Events And Channels (1)
	Slide 12: Events And Channels (2)
	Slide 13: Events And Channels (3)
	Slide 14: Events And Channels (4)
	Slide 15: Events And Channels (5)
	Slide 16: Events And Channels (6)
	Slide 17: Events And Channels (7)
	Slide 18: Events And Channels (9)
	Slide 19: Listening to events in Rust
	Slide 20: Demo Time: Basics
	Slide 21: Permissions (1)
	Slide 22: Permissions (2)
	Slide 23: Capabilities
	Slide 24: IPC: Brownfield
	Slide 25: IPC: Isolation
	Slide 26: Plugins
	Slide 27: Wrapping existing projects in Tauri
	Slide 28: Distribution and Packaging
	Slide 29: Demo: More Advanced Setup
	Slide 30: Additional Links
	Slide 31: Thank you

